
线性代数小班辅导 程阳
以下许多部分写得并不严谨，但是使用和考试会给出清楚的说明。

线性空间与线性映射

线性空间：线性空间是定义在给定数域上的满足八条运算法则的集合。子空间：对加法和数乘封闭的给

定线性空间的子集。

向量：如果在线性空间  中存在  个线性无关的向量，但任意  个向量都线性相关，则称任意 
个线性无关的向量为线性空间  的一组基 (basis)，称  为线性空间  的维数 (dimension)，记作

。

从而，在给定一组基向量的表示下，线性空间中的任意向量都可以唯一地表示为基向量的线性组合，

如：

其中  为基向量，  为系数，  为系数向量。

过渡矩阵：设线性空间  的两个基分别为  和 ，则存在唯一的非

奇异矩阵 ，使得

该矩阵  称为从基  到基  的过渡矩阵 (transition matrix)。在该
过渡矩阵下，向量  在两组基下的坐标向量  和  满足关系：

即

线性映射的表示矩阵：设  是数域  上的线性空间，  是从  到  的线性映射。
设  是  的一组基，  是  的一组基，则存在唯一的  矩
阵 ，使得
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该矩阵  称为线性映射  在基  和  下的表示矩阵
(representation matrix)。

基变换下的表示矩阵：设线性空间  的两个基分别为  和 ，

 和 ，设从基  到基  的过
渡矩阵为 ，从基  到基  的过渡矩阵为 ，则线性映射 

 在两组基下的表示矩阵  和  满足关系：

而如果对于线性变换 ，则有：

线性映射和矩阵之间存在双射的关系，本质上也是线性映射构成空间的同构。

基变换下的线性映射坐标：设线性空间  的基向量分别为  和
，考虑线性映射 ，设  在基  下的坐标向量

为 ，则  在基  下的坐标向量为 ，其中  是线性映射  在基
 和  下的表示矩阵。

例题1：定义  上线性变换  满足 ，

则  在下面这组基下的表示矩阵是多少？

例题2：设 ，  为  上的线性变换，设  在基  下的矩阵为 

，  在另一组基下的矩阵为 ，则这组基是多少？
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例题3：设  是 3 维线性空间  的一个基，  是  上的线性变换，已知

(1) 求线性变换  在基  下的矩阵；

(2) 设由基  到基  的过渡矩阵为 ，向量  在基 

下的坐标是 ，求  在基  下的坐标。

线性映射的确定：设  是  的一组基，则  中任一向
量  的像  由基的像  所完全确定。

线性映射的Image：设  是线性空间  到  的线性映射，  中向量在  的作用下全体象的集合称
为  的像(值域)，记为

 是  的线性子空间，故称  为  的像空间。对于像空间的维数，称为线性映射的秩
(rank)，记为 。其实也等于表示矩阵的秩，即 

。

线性映射的Kernel：设  是线性空间  到  的线性映射，  中所有被映射到零向量的向量的集合称
为  的核(null space)，记为

 是  的线性子空间，故称  为  的核空间。对于核空间的维数，称为线性映射的零度
(nullity)，记为 。其实也等于表示矩阵的零度，即 

。

维数定理：设  是数域  上的线性空间  到  的线性映射，且 ，

则有

同构：设  与  是数域  上的两个线性空间，如果存在从  到  的一个双射满足：

(1) , 则 ,

(2) , 则 ,
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则称  是线性空间的同构(isomorphism)，称  同构于(isomorphic to) ，记为 。同构具

有许多性质：（1）保零元；（2）保逆元；（3）保线性相关性；（4）保维数。其实同构还是等价关系，自
反、对称、传递。

尤其需要知道的是，有限维实空间 （欧氏空间）同构于  当且仅当 。

子空间与直和：子空间首先是给定线性空间的子集，然后判断其是否对加法和数乘封闭，从而构成线性

空间。设  是数域  上的线性空间，  是  的子空间，则称 
 为  与  的和。如果 ，则称  为  与 

的直和(direct sum)，记为 。

直和的等价表述：设  是  的子空间. 则下列叙述等价

(1)  是直和;

(2) 零向量表示法唯一, 即若 , 且 , 则 ;

(3) 对任意 , ;

(4) .

基扩张定理：设  是数域  上的线性空间，  是  的子空间，  中的线性无关组
 可扩展为  的一组基 。

维数公式：设  是数域  上的线性空间，  是  的子空间，则有

像空间和核空间的直和：设  是数域  上的线性空间  到自身的线性变换，则有

例题4：设  是  的子空间. 其中
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求  的一组基.

解：首先求解矩阵 ，使得 。考虑齐次线性方程组

利用初等行变换

所以解为 。若记 ，则 
。同理，对 ，存在 ，使得 。因为齐次线性方程组

的解为 ，记 ，则 。

例题5：设  阶方阵  满足 . 则  是幂等阵.

证明： 令 , . 则有 , 这是因为对任意  维列向量 , 我们
有 . 接下来由维数公式 
, 和题设  可知 . 因为
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可知

即 , 也就是 . 所以  是幂等阵.

线性相关

主要是几个反证法的例题

例题6：对向量组 ，证明：其中任意  个向量均线性无关的充要条件是方程

的任一解均至少有  个非零分量。

例题7：设  是  矩阵，  是  维非零列向量，已知  是非齐次线性方程组  的一个
解，  是导出组  的基础解系，试证明

(1)  线性无关；

(2)  的解集合的极大线性无关组含有  个向量。

相似对角化

判断和计算矩阵是否相似对角化的一般步骤如下：

(1) 计算矩阵  的特征多项式 ；

(2) 求  的根。若不是所有根都在  中，则  不可对角化；
(3) 设  的所有根都在  中。若存在一个特征值  使得  的几何重数不等于代数重数，则  不
可对角化；

(4) 设  的所有根都在  中且对于每一个特征值都有其几何重数等于代数重数。则  可对角化。
设  是  的所有互不相同的特征值。对于 ，取特征子空间  的一组基

，其中 。令
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则

可对角化的三大充要条件：设 ，则下列可对角化的等价表述：

(1)  可相似对角化；

(2)  有  个线性无关的特征向量；

(3) 对于  的落在数域  上的每一个特征值，其几何重数等于代数重数。

(4)设  是  维线性空间  上的线性变换且  是  的所有互不相同的特征值，则  是可对
角化的当且仅当

例题8：设  是域  上的  阶幂等阵，则  可对角化.

证明：设  是  的一个特征值，因为 ，有 . 于是  或 ，对应的特征子空
间为  和 . 它们分别是齐次线性方程组  和  的解空间. 于是

另外，由  可知 . 所以

进一步可知上式中等号成立. 即  有完全特征向量系，所以  可对角化.

例题9：Lucas 数列的定义为： .

(i) 令 ，给出  与  满足的关系式.

(ii) 利用 (i) 的结果，求 Lucas 数列的通项公式.
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例题10：设  为可逆矩阵，  是 3 阶矩阵满足 ，则 

的全部特征值是？

谱分解定理：实对称阵可正交对角化

Schmidt 正交化过程：设  是实数域  上的内积空间，  是  中的一组线性无关向
量，则可按如下步骤构造出  中的一组正交向量组 ：

(1) 令 ；

(2) 对 ，令

QR 分解：设  是  矩阵，且 ，则存在  正交矩阵  和  上三角矩阵
，使得 。

例题10：设 , 求矩阵  的 QR 分解.

谱分解：设  是一个  阶实对称矩阵. 则存在一个  阶正交矩阵  使得  是一个对角阵, 且其
主对角线元素为  的所有特征值.

正交对角化的步骤：

(1) 计算  的特征多项式 , 并求出  的所有互不相同的特征值 ;

(2) 对每个 , 求线性方程组  的一个基础解系, 即特征子空间  的一组基,
再用 Gram–Schmidt 正交化方法, 得到  的一组标准正交基 ;

(3) 令 . 则  是正交矩阵, 且
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例11：设 . 求正交矩阵  使得  是一个对角阵.

解: 首先解得  的特征值为 .  对应的特征向量为 .  对应的特征
向量

对它们用 Gram-Schmidt 正交化可得正交向量组 . 故

看起来复杂一点的谱分解：设  是一个  阶实方阵. 则  是对称矩阵  可正交对角化 
, 其中  是互不相同的实数,  是实对称阵, 且满足

设  是一个  阶实对称矩阵. 则 , 其中  是一个正交
矩阵. 于是  是欧氏空间  的一组标准正交基, 并得到  的分解式

例12：设  是  阶正定矩阵, 则  正定当且仅当 .

证明: 必要性显然. 现证明充分性. 若 , 则  是实对称阵. 因为  正定, 存在可逆矩阵 
使得
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A = λ ​E ​ +1 1 ⋯ + λ ​E ​s s λ ​, … ,λ ​1 s E ​, … ,E ​1 s

E ​ =i
2 E ​, E ​E ​ =i i j 0, i = j, E ​ +1 ⋯ + E ​ =s I ​.n

A n A = Qdiag(λ ​, … ,λ ​)Q1 n
T Q = (γ ​, … ,γ ​)1 n

{γ ​, … ,γ ​}1 n Rn A

A = (γ ​, … ,γ ​)diag{λ ​, … ,λ ​} ​ ​ ​ =1 n 1 n

γ ​1
T

⋮
γ ​n
T

λ ​γ ​γ ​ +1 1 1
T ⋯ + λ ​γ ​γ ​.n n n

T

A,B n AB AB = BA

AB = BA AB A C



于是  与  相似. 又因为  是实对称阵, 而且与 
相合, 由  正定可知  也正定. 所以  的特征值都是正实数. 故  的特征值也都是正实
数, 所以  正定.

二次型与谱分解的应用

例题13：设  是实对称阵，满足 , 其中

, 令 ,  是相应实二次型.

(i) 用正交替换（主轴化）方法将  化成标准形，并求相应可逆线性替换；
(ii) 求矩阵 ；
(iii) 方程  表示什么曲面？

例题14：设  是一个  阶可逆实矩阵。

(i) 证明：  与  均为正定矩阵。

(ii) 求矩阵  的正负惯性指数。

(iii) 证明矩阵  可分解为一个正交矩阵  与一个正定矩阵  的乘积，即 。

例题15：  表示的二次曲面是________________。

A = C C.T

AB = C CBT (C ) (C CB)C =T −1 T T CBCT CBCT B

B CBCT CBCT AB

AB

A = ​ ​ ​ ​ ​

a ​11

a ​12

a ​13

a ​12

a ​22

a ​23

a ​13

a ​23

a ​33

a ​ +11 a ​ +22 a ​ =33 2,AB = 0

B = ​ ​ ​ ​ ​

1
1
1

1
3
2

0
2
1

x = ​ ​ ​

x ​1

x ​2

x ​3

f(x ​,x ​,x ​) =1 2 3 x AxT

f(x ​,x ​,x ​)1 2 3

A

f(x ​,x ​,x ​) =1 2 3 1

A n

AAT A AT

M = ​ ​( 0
A

AT

0
)

A Q S A = QS

x ​ +1
2 x ​ +2

2 x ​ +3
2 4x ​x ​ +1 2 4x ​x ​ −1 3 4x ​x ​ =2 3 1



正定矩阵和半正定矩阵：在谱分解视角下看

对于我们考虑的正定与否的问题，通常只需要对实对称矩阵正交对角化，通过观察其对角元的正负即可

完成判断。

但仍有传统判定的定理：

1. 一个  阶实对称矩阵  是正定的当且仅当  的所有顺序主子式都大于零。
2. 一个  阶实对称矩阵  是正定的当且仅当  的所有主子式都大于零。
3. 设  是一个  阶正定阵. 则  的主对角线元素都大于零. 而且  中绝对值最大的元素仅在主对角
线上.

4. 一个  阶实对称矩阵  是半正定的当且仅当  的所有主子式都大于等于零。

尤其需要注意的是：

的顺序主子式都是零, 但  显然不是半正定的.

例题16：设  为任意  阶实反对称矩阵（即 ），试证明  是正定矩阵.

例题17：一个  阶实对称矩阵  是半正定的当且仅当对于任意一个正实数  是正定的。

奇异值分解 SVD
定义：设  是  实矩阵. 若存在非负实数  和非零实向量  和  使得

则称  是  的奇异值,  分别称为  关于  的右奇异向量和左奇异向量.

这个定义的来源要源于约束下的多元函数的极值，你们在多元微积分中会学到的拉格朗日乘子法。

奇异值分解的定理：设  是一个  实矩阵. 则存在  阶正交矩阵  与  阶正交矩阵  使得

n A A

n A A

A n A A

n A A

A = ​ ​(0
0

0
−1

)

A

A n A =T −A I − A2

n A λ,λI ​ +n A

A m × n σ x ∈ Rn y ∈ Rm

Ax = σy, A y =T σx,

σ A x,y A σ

A m × n m P n Q



其中 , ,  是  的所有非零奇异值.

奇异值分解的执行步骤：

(1) 求出半正定矩阵  的正交相似标准形, 即求  阶正交矩阵  使得

其中 ,  是  的正特征值.

(2) 记 . 令

(3) 将  扩充成  一组标准正交基

令 . 则 , 其中 .

例题18：求矩阵  的奇异值分解.

解： 计算可得，

将  正交对角化，求得正交矩阵

使得 。记 ，令

P AQ =T
​ ​ 或 A =(S0

0
0) P ​ ​ Q ,(S0

0
0) T

S = diag{σ ​, … ,σ ​}1 r r = r(A) σ ​ ≥1 ⋯ ≥ σ ​ >r 0 A

A AT n Q

Q A AQ =T T diag{λ ​, … ,λ ​, 0, … , 0},1 r

r = r(A) λ ​ ≥1 ⋯ ≥ λ ​ >r 0 A AT

Q = (α ​, … ,α ​)1 n

σ ​ =i ​, β ​ =λ ​i i ​Aα ​, 1 ≤
σ ​i

1
i i ≤ r.

β ​, … ,β ​1 r Rm

{β ​, … ,β ​,β ​, … ,β ​}.1 r r+1 m

P = (β ​, … ,β ​)1 m A = P ​ ​ Q(S
0

0
0

) T S = diag{σ ​, … ,σ ​}1 r

A = ​ ​ ​ ​ ​

1
1
0

2
0
1

5
1
2

A A =T
​ ​ ​ ​ ​

2
2
6

2
5

12

6
12
30

A AT

Q = ​ ​ ​ ​ ​

​

​30
1

​

​30
2

​

​30
5

​

​5
2

− ​

​5
1

0

​

​6
1

​

​6
2

− ​

​6
1

Q A AQ =T T diag(36, 1, 0) Q = (α ​,α ​,α ​)1 2 3



再取  使得  是  的一组标准正交基。令 。则得

到  的奇异值分解为

简化版的奇异值分解：设  是  的奇异值分解且 , 即  与  分别是  与  阶
正交矩阵, 且

其中 ,  是  的所有非零奇异值. 记

令  是  矩阵,  是  矩阵, 则

例题19：给定  阶可逆矩阵  及线性方程组 。求证：

其中  分别为  的最大和最小奇异值。

证明：设 ， 。由题意知：

同时有：

σ ​ =1 6, β ​ =1 ​Aα ​ =
6
1

1 ​(5, 1, 2)
​30

1 T

σ ​ =2 1, β ​ =2 Aα ​ =2 ​(0, 2, −1)
​5

1 T

β ​ =3 ​(−1, 1, 2)
​6

1 T {β ​,β ​,β ​}1 2 3 R3 P = (β ​,β ​,β ​)1 2 3

A

A = P ​ ​ ​ ​ ​Q

6
0
0

0
1
0

0
0
0

T

A = PΣQT A r = r(A) P Q m n

Σ = ​ ​ ∈(S
0

0
0

) M ​(R),m,n

S = diag{σ ​, … ,σ ​}1 r σ ​ ≥1 ⋯ ≥ σ ​ >r 0 A

P = (u ​, … ,u ​), Q =1 m (v ​, … ,v ​),1 n

P ​ =r (u ​, … ,u ​)1 r m × r Q ​ =r (v ​, … ,v ​)1 r n × r

A = P ​SQ ​ =r r
T σ ​u ​v ​ +1 1 1

T ⋯ + σ ​u ​v ​.r r r
T

n A Ax = b,A =x~ b
~

​ ≤
∥x∥

∥x − ∥x~
​ ​,

σ ​n

σ ​1

∥b∥
∥b − ∥b

~

σ ​,σ ​1 n A

Δx = x − x~ Δb = b − b
~

AΔx = Δb ⟹ Δx = A Δb−1

b = Ax



根据矩阵范数的定义及其与向量范数的相容性：

1. 从  可得：

2. 从  可得：

将上述两个不等式左边与左边、右边与右边分别相乘：

在  范数下，已知：

代入上式得：

正交补和正交投影

正交和：设  是欧氏空间  的子空间, 且两两正交. 则

还有定理：设  是欧氏空间  的一个子空间. 则 , 而且  的任意一组标准正交基可以
扩充为  的一组标准正交基.（正交基版本的基扩张）

正交补和四个子空间：设  是一个  实矩阵. 则有

这是因为齐次方程组  的任意解向量  与  的所有行向量正交.  对应的线性映射 
将  映射到零空间, 将  映射到 .

Δx = A Δb−1

∥Δx∥ ≤ ∥A ∥ ⋅−1 ∥Δb∥

b = Ax

∥b∥ ≤ ∥A∥ ⋅ ∥x∥ ⟹ ​ ≤
∥x∥

1
​

∥b∥
∥A∥

​ ≤
∥x∥

∥Δx∥
∥A∥ ⋅ ∥A ∥ ​

−1

∥b∥
∥Δb∥

L ​2

∥A∥ ​ =2 σ ​1

∥A ∥ ​ =−1
2 ​ =

σ ​(A)min

1
​

σ ​n

1

​ ≤
∥x∥

∥x − ∥x~
​ ​

σ ​n

σ ​1

∥b∥
∥b − ∥b

~

V ​,V ​, ⋯ ,V ​1 2 s V

V ​ +1 V ​ +2 ⋯ + V ​ =s V ​ ⊕1 V ​ ⊕2 ⋯ ⊕ V ​.s

U V V = U ⊕ U⊥ U

V

A m × n

N(A) =⊥ C(A ) ⊆T R ;n

C(A) =⊥ N(A ) ⊆T R .m

Ax = 0 x A A R →n Rm

N(A) C(A )T C(A)



正交投影：设 . 则对任意 , 存在唯一分解

类似的定义  上的线性变换 . 称为  到  的正交投影. 则  满足

正交投影的表示矩阵：考虑欧氏空间 。设  是一个子空间，  是  的一组标
准正交基。则对任意 ，

令 ，则

于是，正交投影  在  的自然基下的表示矩阵为 。

显然，上述表示矩阵和  的标准正交基的选取无关。

例题20：设  是一个  实矩阵。设  列满秩。求  到它的子空间  的正交投影
 在  的自然基下的表示矩阵。

解： 对任意向量 ，设它到  的正交投影为 。则存在列向量 ，使得 
。于是

因此

即 。也就是 。

接下来考虑线性方程组 。因为 ，所以 ，方程

组有解。由于  列满秩，  可逆，则存在唯一解 。于是  在  上的正
交投影为

所以  到  的正交投影  在  的自然基下的表示矩阵为

V = V ​ ⊥1 V ​ ⊥2 ⋯ ⊥ V ​k α ∈ V

α = α ​ +1 ⋯ + α ​, α ​ ∈k i V ​.i

V π ​ :i V → V ,π ​(α) =i α ​i V V ​i π ​i

π ​ =i
2 π ​, π ​ +i 1 ⋯ + π ​ =k Id ​.V

Rn U ⊂ Rn {α ​, ⋯ ,α ​}1 m U

α ∈ Rn

π ​(α) =U (α ​α)α ​ +1
T

1 ⋯ + (α ​α)α ​.m
T

m

Q = (α ​, ⋯ ,α ​)1 m

π ​(α) =U α ​α ​α +1 1
T ⋯ + α ​α ​α =m m

T QQ α.T

π ​U Rn QQT

U

A m × n A Rm U = C(A)
π ​U Rm

b ∈ Rm C(A) b′ x ∈ Rn b =′ Ax

(b − Ax) ⊥ C(A).

b − Ax ∈ C(A) =⊥ N(A ).T

A (b −T Ax) = 0 A Ax =T A bT

A Ax =T A bT C(A A) =T C(A )T A b ∈T C(A A)T

A A AT x = (A A) A bT −1 T b C(A)

Ax = A(A A) A b.T −1 T

Rm U = C(A) π ​U Rm

A(A A) A .T −1 T



后记

时间有限，有一些内容还没有涵盖到，尤其是线代期中前的内容，以及最小二乘和矩阵产生的四个子空

间的理论。希望同学们课后能自行复习。


